19224

A 120 MINUTES

1.	The total energy density of an electromagnetic wave is:							
	A)	$\frac{\varepsilon E_0^2}{2}$	B)	$\frac{B_0^2}{2\mu}$	C)	$\frac{B^2}{2\epsilon}$	D)	εE_0^2
2.	The p A)	otential at a po r ⁻¹	int due t B)	to a linear quad r^{-2}	rupole C)	varies with dis	tance ' D)	r'as: r ³
3.	The P	oynting Vector	ofach	arge q moving	with a	uniform veloci	ty v is	
	A)	$5\varepsilon_0$	B)	$\frac{11}{2}\varepsilon_0$	C)	$\frac{\sqrt{11}}{2}\varepsilon_0$	D)	$22\varepsilon_0$
4.	The at 600 nt A)	ngular frequend m is 6.28×10^{14} 3×10^8 m/s	cy of ele	-	n electi the wa	romagnetic wav		ng wavelength 1.5x10 ⁸ m/s
			,		,		,	
5.	The v A)	· - ·	at the po	osition defined B)	-	vector \vec{r} in a un $3(\vec{r}X\vec{B})$	niform	magnetic field is:
	C)	$\vec{A} = \frac{1}{6} (\vec{B} X \vec{r})$)	D)	$\vec{A} = \frac{1}{2}$	$\frac{1}{2}(\vec{B}X\vec{r})$		
6.	Diver	gence of position	on vecto	or in three dime	nsion	$(\vec{\nabla}, \vec{r})$ is		
	A)	0	B)	1		2	D)	3
7.		atio of amplitud mension of:	les of m	agnetic and ele	etric fi	ields in an elect	romag	netic wave has
	A)	Inductance	B)	Conductance	C)	Resistance	D)	Capacitance
8.		mplitudes of el gating through		-	lds in a	an electromagne	etic wa	ve
					C)	$E_0 k = B_0 \omega$	D)	$\frac{B_0}{E_0} = c$
9.		rged particle m rtional to	ioves wi	th an accelerat	ion 'a'	. The power rad	diated	by it is
	A)	a ⁰	B)	a	C)	a ²	D)	a ³
10.	The differential form of Faraday's law of electromagnetic induction is							
	A)	$\nabla X \vec{H} = \epsilon_0 \frac{\partial E}{\partial t}$		B)	Curl	$\vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$		
		$\nabla . \vec{B} = 0$		D)	∇ . \vec{E}	$= \frac{\rho}{\varepsilon_0}$		
11.		-	ght emit	ted by an atom	which	n is excited to h	igher s	tate by 4 eV is
	nearly A)	400 nm	B)	310 nm	C)	280 nm	D)	460 nm

12.	The binding of an electron in the ground state of an atom is 24.6 eV. The total energy required to remove both the electrons from the atom is	
	A) 49.2 eV B) 98.4 eV C) 79 eV D) 246 eV	
13.	The magnetic field required to observe normal Zeeman Effect if a spectrometer can resolve spectral lines separated by 0.45 Å at 4500 Å is	
	A) 3.61 T B) 4.28 T C) 1.26 T D) 2.45 T	
14.	The frequency at which an electron with orbital magnetic moment μ precesses in a magnetic field \vec{B} is	
	A) $\frac{e}{2m}\vec{\mu}$ B) $\frac{2m}{e}\vec{\mu}$ C) $\vec{\mu}.\vec{B}$ D) $\frac{e}{2m}\vec{B}$	
15.	The minimum voltage that is to be applied to X-ray tube to produce X-ray photons of wavelength 1 Å is	
	A) 125 MV B) 125 kV C) 66 kV D) 25 MV	
16.	The surface term in the semi-empirical mass formula for the binding energy of nucleus depends on its mass number A as	
	A) A B) $A^{2/3}$ C) $A^{-1/3}$ D) A^{-1}	
17.	If the wavelength of first line of Lyman series is 1215 Å, then the series limit of Lyman series of Hydrogen spectrum is	
	A) 1215 Å B) 911 Å C) 1025 Å D) 3820 Å	
18.	Which one of- the following particles cannot be accelerated by cyclotron?A) Electron B) Proton C) α - particle D) Deuteron	
19.	The co-ordination number of a face centered cubic structure is $D = 12$	
20	A) 8 B) 6 C) 4 D) 12	
20.	If the primitive cell contains p atoms, then the number of optical branches in the phonon dispersion relation is	
	A) 3p-1 B) 3p-2 C) 3p-3 D) 3p	
21.	The specific heat capacity of a material at very low temperature varies with temperature T a A) $C_v \propto T^2$ B) $C_v \propto T$ C) $C_v \propto T^3$ D) $C_v \propto T^4$	s:
22.	If K and σ are the thermal and electrical conductivities of a metal at temperature T, then Lorentz number (L) can be represented as:	
	A) $\frac{T}{K\sigma}$ B) $\frac{K}{T\sigma}$ C) $\frac{KT}{\sigma}$ D) σKT	
23.	The magnetic state of a superconductor is:A)ParamagneticB)Diamagnetic	
	C) Ferromagnetic D) Antiferromagnetic	
24.	The critical magnetic fields of a superconductor material are 1×10^5 A/m and 2×10^5 A/m at 10 K and 0 K respectively. Then, the critical temperature of the material is A) 10.31 K B) 10 K C) 14.14 K D) 7.07 K	

25.		the followin 1, 0, $\frac{1}{2}$	-		quantur C)	n numbers (n, 1 3, 1, -1, $\frac{1}{2}$,	
26.	The energ	gy of an elec	tron in	the energy leve	el (121)	in a cubical po	tential b	oox of side 1 Å	
	is A) 1.	13 eV	B)	2.25 eV	C)	226 eV	D)	11.2 eV	
27.	 Colour of a Light Emitting Diode (LED) depends on A) Applied biasing voltage B) Nature of the material used C) Recombination rate of charge carriers D) All the above 								
28.	The mom A) ħk	entum of a j	phonon B)	is ħω	C)	Zero	D)	hk	
29.	voltage of			netic wave rad l across the jun 3.2 GHz		a Josephson ju 6.63 GHz	D)	when a DC 1.6 GHz	
30.	 The dominant mechanism for the motion of charge carriers in forward and reverse biased silicon p-n junction are A) drift in forward bias and diffusion in reverse bias B) diffusion in forward bias and drift in reverse bias C) diffusion in both D) drift in both 								
31.	very much A) X B) X C) X	B) X is ferromagnetic and Y is paramagneticC) X is diamagnetic and Y is ferromagnetic							
32.	$4x10^{-5}$ T.					ided in a horizo om the directio 1.2 J		ngnetic field of e field is: 0.2 J	
33.		e difference	between B)	n electric and r 90 ⁰	nagneti C)	c fields in a plat 0^0	ne elect D)	tromagnetic wave Is: 45°	
34.	magnetic through th	The earth's magnetic field at a point is 0.314×10^{-4} T. This field is to be cancelled by magnetic field at the centre of a circular loop of radius 1 cm. The required current through the loop is:							
35.	Two wire	s of same le then the rat	ngth are		circle a	nd square. If b		hem carry same $\pi: 2$	

36.	If E and B represent electric and magnetic fields of an electromagnetic wave respectively, then which of the following is dimensionless?							
	A)	$\frac{E}{\varepsilon_0} X \frac{\mu_0}{B}$	B)	$\sqrt{\epsilon_0 \mu_0} \left(\frac{E}{B}\right)$	C)	$\left(\epsilon_0\mu_0\right)\left(\frac{B}{E}\right)^2$	D)	$\epsilon_0 \mu_0 \left(\frac{E}{B}\right)$
37.	The d A)	limension of rat LT ⁻¹	io of ma B)		electric C)		D)	LTA ⁻²
38.		adiation pressur			romagnet	tic wave of inte	nsity 3(00 mW/m^2
	A)	$9 \times 10^{10} \text{ N/m}^2$	B)	$1 \times 10^{-9} \text{ N/m}^2$	C)	9x10 ⁻¹⁰ N/m ²	D)	$4x10^9 \text{ N/m}^2$
39.		ydrogen atom a of mass m is:	t rest en	nits a photon o	of wavel	ength λ , then the	e recoil	velocity the
	A)	mhλ	B)	mh/λ	C)	h/ m λ	D)	mλ/h
40.	If the 45° t	horizontal com hen the total int	ponent ensity o	of earth's mag	gnetic fie	eld at a place is it place is it	B_0 and	the dip angle is
	A)	B ₀	B)	$2B_0$	C)		D)	$\sqrt{2}B_0^2$
41.	The n	uclear radius of	$f_{47}Ag^{207}$	⁷ is about				
	A)	8.1 fm	B)	6.2 fm	C)	3.1 fm	D)	3 fm
42.	The n	sucleus ${}_{6}C^{12}$ absolute	orbs a n	eutron and en	nits a bet	a particle. The r	esulting	g nucleus is
	A)	$_{7}N^{14}$	B)	7N ¹³	C)	₆ C ¹³	D)	${}_{6}C^{14}$
43.		olume of an atcons A. Then th			rtional to	o x th power of to	otal nun	nber of
	A)	1/3	B)	2/3	C)	-1/3	D)	1
44.	Whic A) C)	h of the followi Short range Spin independ	-	t a property o B) D)	Charg	force? ge independent ation property		
45.	Whic A)	h of the followi 20	ng is no B)	t a magic nun 50	nber base C)	ed on nuclear sh 80	ell moo D)	del? 82
46.	radii o	of A and B, resp	pectivel	У		related as, when		
	A)	$R_A = 2R_B$	B)	$R_A = 8R_B$	C)	$R_A = \frac{1}{2}R_B$	D)	$R_A = \frac{1}{8} R_B$
47.	Which A) C)	h of the followi Isospin Spin	ng is no	t conserved d B) D)	Parity	uclear reaction		

48.	The energy released per fission of Uranium produced by complete fission of 1 kg of A) 22600000 B) 5130000		hen the en D)	ergy 1600000
10	, , , ,	,)	
49.	Which of the following particle decay is no			
	A) $\Lambda^0 \to n + \gamma$ B) $\Lambda^0 \to p + \pi^-$	$\pi^{0} \to \gamma + \gamma$	· D)	$\pi^+ \rightarrow e^+ + v_e$
50.	The difference between electron and positr			
	A) Mass B) Spin	C) Charge	D)	All the above
7 1		,• •		
51.	The particles exchanged during strong inte		D)	
	A) Photons B) Bosons	C) Mesons	D)	Gravitons
52.	The strangeness number and hypercharge of	of a nucleon are		
	A) 0 and 0 B) 1 and 0	C) -1 and 0	D)	0 and 1
		-)	_)	
53.	A meson is made up of			
	A) Quark and antiquark B)	Two quarks		
	C) Two antiquarks D)	Two quarks and or	ne antiquai	`k
54.	The half-life of a radioactive element X is			of X got
	reduced to 4 mg. Determine the initial mas			
	A) 4 mg B) 8 mg	C) 16 mg	D)	32 mg
55.	The energy released during a proton proton	avala in MaV is not		
55.	The energy released during a proton-proton A) 2.67 B) 26.7	$\begin{array}{c} \text{C} \\ \text{C} \\ \end{array} 0.267 \\ \end{array}$	D)	267
	A) 2.07 b) 20.7	C) 0.207	D)	207
56.	Electronic polarizability (α_e) of an atom is r	elated to its radius (r) as	
001	A) $\alpha_e = 4\pi\varepsilon_0 r$ B) $\alpha_e = 4\pi\varepsilon_0 r^2$			$\alpha = 2\pi \epsilon r^3$
	$(1) \alpha_e (1) \beta_e \beta_e (1) \alpha_e (1) \beta_e (1) (1) \beta_e (1) $	$c) \alpha_e m \sigma_0 r$	2)	$\alpha_e = 2\pi \sigma_0 r$
57.	The unknown particle X in the nuclear read	ction in ${}^{13}C_6 + X -$	$\rightarrow {}^{13}N_7 + e^-$	
	A) v_e B) \overline{v}_{μ}	C) e^+	D)	<i>e</i> ⁻
	r_{e} r_{e} r_{μ}	0)	2)	•
58.	When a nucleus emits beta particle			
50.	A) its charge changes by one unit	B) its charge r	emains sa	me
	C) its mass changes by one unit	D) its mass ch		
	c) its mass enanges by one unit		unges by I	our units
59.	Nuclei with same mass number but proton	and neutron number	interchang	ged are
	called		· · ·	
	A) isotopes B) isobars	C) mirror nucl	ei D)	isotones
60.	According to the nuclear shell model, grou	nd state spin and par	ity of 17 O	nucleus is
	1^+ 1^-	5^{+}	D)	5 ⁻
	A) $\frac{1}{2}^+$ B) $\frac{1}{2}^-$	C) $\frac{5^+}{2}$	D)	$\frac{5}{2}^{-}$

61.		b) type semiconductor?B) positively chargedD) has many holes				
62.	What causes depletion layer?A)dopingB)C)barrier potentialD)	recombination ions				
63.	output signal voltage is	ifference between the input signal voltage and $(2 - 1)$				
	A) 0 B) $\pi/4$	C) $\pi/2$ D) π				
64.	To reduce the distortion of an amplifiedA)collector resistanceB)C)generator resistanceD)	emitter feedback resistance				
65.	Which of the following is true related with A) voltage controlled device B)C) has low input resistance D)	current controlled device				
66.	The pinching voltage of JFET has the saA)gate voltageB)C)gate source voltageD)	drain source voltage				
67.	If the peak output voltage of full wave b A) $\frac{V_m}{\pi}$ B) $\frac{2V_m}{\pi}$	ridge rectifier is $V_{m,i}$, its no-load output dc voltage is: C) $\frac{V_m}{2\pi}$ D) $\frac{3V_m}{\pi}$				
68.	An Op-Amp can amplifyA) ac signalB)C) both ac and dc signalsD)	de signal neither ac nor de signals				
69.	Minimum number of NOR Gates require A) 3 B) 4	ed to construct an AND Gate is C) 2 D) 6				
70.	Which of the following is not true aboutA) spontaneous emission B)C) low current density D)	incoherent light				
71.	The efficiency of a photo detector is directlyA)photocurrentB)C)charge generatedD)	incident optical power				
72.	The biasing state of a solar cell isA)unbiasedB)C)reverse biasedD)					
73.	The number of flip-flops required to des A) 5 B) 6	ign a mode-6 counter is C) 2 D) 3				

74.	The reso A) 3		ADC is B)	3, then the nu 2	umber of C)	possible states 6	is D)	8
75.	micropro	ocessor is				ons to be execut		
	A) I	Р	B)	SP	C)	IR	D)	SR
76.	Two res combina		2) Ω an	d (120±4) Ω :	are in sei	ries, then the pe	ercentag	e error in the
	A) 3	3.3	B)	6	C)	2	D)	8
77.	A)rB)rC)a	evel of an intri- near conduction near valence but center of for none of the ab	on band band ma rbidden	minimum ximum	is			
78.						nce of 500 k Ω ,	ac drain	n resistance of
		and amplifica	B)	20 24, then 1	C)	30	D)	40
79.	A) u	register that ha iniversal shift shift register c	registe	er B)	bidire	ut and output is ectional shift reg of the above		
80.	100 µA,					bb is 6 V, curren current in mA is 1.2		s 75, I _{co} is 120
81.	If the ma	atrix $A = \begin{pmatrix} \alpha \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1\\ \alpha \end{pmatrix}$ a	nd $ A^2 = 49$, then the	e value of α is		
	A) ()	B)	±1	C)	±2	D)	±3
82.	A) Z	en values of a Zero	skew –	B)	Imagi	nary		
	C) I	Real		D)	Both	A and B		
83.	For Lag	uerre polynor	nials, \int_{C}	$\int_{0}^{\infty} f(t) L_n(t) L_n(t)$	$m_m(t)dt$	$=\delta_{nm}$, where δ_{nm}	f(t)=	
	A) 1	l	B)	exp(-t)	C)	t	D)	$exp(-t^{2}/2)$
84.	Value of	$\int_0^{\pi} \frac{d\theta}{2 - \cos\theta}$ is						
	A) $\frac{1}{2}$	$\frac{\pi i}{2\sqrt{5}}$	B)	$\frac{\pi}{\sqrt{3}}$	C)	$\frac{\pi i}{\sqrt{2}}$	D)	$\frac{\pi}{\sqrt{5}}$
85.	Laplace	transform of						
	A) -	$\frac{a}{s^2-a^2}$	B)	$\frac{s}{s^2-a^2}$	C)	$\frac{s}{s^2 + a^2}$	D)	$\frac{a}{s^2 + a^2}$

- 86. Let P be a (n x n) diagonalizable matrix. Given P is idempotent with Trace (P) = n-1. Then det(P)=
 - A) 1 B) 0 C) n D) n^2
- 87. The spin and charge of Up quark is

A)
$$\frac{1}{2}$$
 and $+\frac{2}{3}e$ B) $\frac{3}{2}$ and $+\frac{1}{3}e$ C) $\frac{1}{2}$ and $-\frac{1}{2}e$ D) $\frac{3}{2}$ and $+\frac{2}{3}e$

- 88. As sample size increases, the sampling distribution must approaches to normal distribution is termed as
 - A) Limited approximation theorem
 - B) Secondary limit theorem
 - C) Primary limit theorem
 - D) Central limit theorem

89. A possible unit tangent vector to the plane $x^2+y^2+z^2 = 4$ at (3,2,1) is

A)
$$\left(-\frac{i}{\sqrt{5}} + \frac{2j}{\sqrt{5}}\right)$$
 B) $\left(\frac{i}{\sqrt{5}} + \frac{2j}{\sqrt{5}}\right)$ C) $\left(\frac{i}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right)$ D) $\left(-\frac{2i}{\sqrt{13}} + \frac{3j}{\sqrt{13}}\right)$

90. Bessel function
$$J_{1/2}(x)$$
 varies as
A) $\frac{\sin(x)}{x}$ B) $\frac{\cos(x)}{x^2}$ C) $\frac{\sin(x)}{\sqrt{x}}$ D) $\frac{x^2}{\sin(x)}$

91. The Lagrangian of a mechanical system with two degree of freedom x and y is $L = \dot{x}^2 + \dot{y}^2$. The Hamiltonian of the system is

A)
$$\frac{1}{4}(p_x^2 + p_y^2)$$

B) $\frac{1}{4}(\dot{q_x}^2 + \dot{q_y}^2)$
C) $\frac{1}{2}(p_x^2 + p_y^2)$
D) $\frac{1}{2}(\dot{q_x}^2 + \dot{q_y}^2)$

92. 2 bodies of masses m and 2m are connected by a massless spring of constant k. If ω is the angular frequency of oscillations, then $\omega^2 =$

A)
$$\frac{3k}{m}$$
 B) $\frac{k}{2m}$ C) $\frac{3k}{2m}$ D) $\frac{k}{3m}$

- 93.XRD pattern from a Body Centred Cubic (BCC) crystal does not contain the plane
A) (310)B) (111)C) (110)D) (220)
- 94. A particle of mass m is in a potential $V(x) = \frac{ax^2}{2} + \frac{bx^4}{4}$, where x be the displacement from the origin. The angular frequency of small oscillations will be

A)
$$\sqrt{\frac{a}{2m}}$$
 B) $\sqrt{\frac{2a}{m}}$ C) $\sqrt{\frac{b}{2m}}$ D) $\sqrt{\frac{b}{2am}}$

95. If a body moves under a potential $V(r) = -\frac{\alpha}{r}$, where α is a constant and r be the distance from origin, its path will be parabolic if total energy (E) is A) Positive B) Negative C) Zero D) Negative but $E < -2\alpha$ 96. Let $q = \{q_1, q_2\}$ and $p = \{p_1, p_2\}$ be the sets of generalised coordinate and momenta. Given $A = q_1^2 + q_2^2$ and $B=2p_1+p_2$, then Poisson bracket [A, B]=

A)
$$2(2q_1+q_2)$$
 B) q_1+q_2 C) $q_1p_1 + 2p_2q_2$ (D) $3(q_1-2q_2)$

97. Rutherford elastic scattering cross section varies with center of mass energy (E) as

A)
$$\frac{1}{E}$$
 B) $\frac{1}{E^2}$ C) E D) E^2

- 98. Choose the correct statement from the following about Moment of Inertia tensorA) It depends on angular velocity
 - B) It will be symmetric only in principal axis system
 - C) Its components will not change with respect to change in axes system
 - D) In a general axis system, angular momentum will not be parallel to angular velocity
- 99. A satellite moves around a planet in a circular orbit at a distance R from its centre. The time period of revolution of the satellite is T. If the same satellite is taken to an orbit of radius 4R around the same planet, the time period would be
 - A) T/8 B) T/4 C) 8T D) 4T
- 100. If the kinetic energy of a relativistic particle of rest mass m is equal to half of its rest energy, then the velocity of the particle is (in terms of velocity of light in vacuum, c)

A)
$$\frac{\sqrt{5}}{3}c$$
 B) $\frac{\sqrt{2}}{3}c$ C) $\frac{3}{\sqrt{2}}c$ D) $\frac{1}{2}c$

- 101. A carnot engine works between two temperatures $27^{0}C$ and $127^{0}C$. Its efficiency will be
 - A) 50% B) 25% C) 17% D) $\left(\frac{100}{127}\right)\%$
- 102. Which thermodynamic potential remains constant in Joule-Thomson process?
 - A) TemperatureB) VolumeC) EnthalpyD) Internal Energy
- 103. Entropy in rolling a 6-faced dice will be (k_B is the Boltzman constant)
 - A) $k_B ln(10)$ B) $k_B ln(6!)$ C) $k_B ln(6)$ D) $k_B ln(2^6)$
- 104. Total energy U varies with number of particles N in fermi system as temperature $T \rightarrow 0K$
 - A) $N^{2/3}$ B) $N^{3/2}$ C) $N^{5/3}$ D) $N^{1/3}$
- 105.The frequency of a microwave radiation of wavelength 15 mm isA)20 GHzB)30 GHzC)15 GHzD)10 GHz

106. Number of molecules of oxygen at S.T.P is N_A and number of photons in an enclosure of volume 22.4 cm^3 at 273 K is N_{ph} . Then

A) $N_{ph} > N_A$ B) $N_{ph} < N_A$ C) $N_{ph} = N_A$ D) None of these

- 107. Problem of Ultraviolet catastrophe is a consequence of
 - A) Maxwell Boltzman LawB) Rayleigh Jeans LawC) Plank's LawD) Fermi's Golden Rule
- 108. According to Maxwell Boltzmann Distribution, average velocity of molecule at temperature T K is (m is the mass of one molecule)

A)
$$\sqrt{\frac{2k_BT}{m}}$$
 B) $\sqrt{\frac{k_BT}{m}}$ C) $\sqrt{\frac{3k_BT}{m}}$ D) $\sqrt{\frac{8k_BT}{\pi m}}$

109. Bose-Einstein Distribution law is obeyed by,

- A) Neutral PionB) Positive MuonC) Tau-neutrinoD) Down Quark
- 110. If Z is a canonical partition function and E be the energy, then

A)
$$\langle E^2 \rangle = \frac{1}{z} \frac{\partial^2 z}{\partial \beta^2}$$
 B) $\langle E^2 \rangle = -\frac{1}{\beta z} \frac{\partial z}{\partial \beta}$

C)
$$\langle E^2 \rangle = \frac{1}{\beta} \sqrt{\frac{1}{z} \frac{\partial^2 Z}{\partial \beta^2}}$$
 D) $\langle E^2 \rangle = \frac{1}{z^2} \frac{\partial^2 Z}{\partial \beta^2}$

111. A beam of electrons of energy 25 MeV is incident at a potential step of 16 MeV. Fraction of beam that would be reflected is

112. Intrinsic carrier concentration in a pure semiconductor is proportional to

A)
$$\exp\left(-\frac{E_g}{k_BT}\right)$$

B) $\exp\left(-\frac{2E_g}{k_BT}\right)$
C) $\exp\left(-\frac{E_g}{2k_BT}\right)$
D) $\exp\left(-\frac{E_g}{4k_BT}\right)$

113. Hermitian conjugate of operator $\frac{\partial}{\partial x}$ will be

A)
$$i\frac{\partial}{\partial x}$$
 B) $\frac{\partial}{\partial x}$ C) $-\frac{\partial}{\partial x}$ D) $-i\frac{\partial}{\partial x}$

114. If
$$r = |\vec{r}|$$
, then $\frac{1}{r} \frac{\partial^2}{\partial r^2} r =$
A) Zero B) $\frac{1}{r^2} \frac{\partial}{\partial r}$ C) $\frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial}{\partial r}$ D) $\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$

- 115. Let *a*, a^{\dagger} be annihilation and creation operators in one dimensional harmonic oscillator state represented by $|n\rangle$, then , $(a + a^{\dagger})^2 |3\rangle =$
 - A) Zero B) $\sqrt{5} |2\rangle$ C) $7 |3\rangle$ D) $3 |4\rangle$
- 116. First Born approximation, in case of scattering of particles by a potential, is valid forA) Small incident energies and strong scattering potentials
 - A) Small incident energies and strong scattering potentialsB) Large incident energies and strong scattering potentials
 - C) Small incident energies and weak scattering potentials
 - D) Large incident energies and weak scattering potentials
- 117. 3 non interacting electrons with spin states $|\chi_1\rangle = |\chi_2\rangle = |\chi_3\rangle$ are inside a one dimensional infinite potential well with V(x) = 0 for 0 < x < L. Second excited state energy of system will be
 - A) $\frac{9\pi^2\hbar^2}{2mL^2}$ B) $\frac{13\pi^2\hbar^2}{mL^2}$ C) $\frac{7\pi^2\hbar^2}{mL^2}$ D) $\frac{15\pi^2\hbar^2}{2mL^2}$
- 118. If two spins s_1 and s_2 are coupled, then the total number of final spin states will be
 - A) $(2s_1 + 1)(2s_2 + 1)$ C) $(s_1 - s_2)$ B) $(s_1 + s_2)$ D) $(2(s_1 + s_2) + 1)$
- 119. In a low energy scattering of unpolarised electrons, singlet and triplet scattering cross sections are 2 mb and 4 mb respectively. Differential cross section is
 - A) 2 mb B) 6 mb C) 3.5 mb D) $\sqrt{8}$ mb
- 120. If \hat{p} and \hat{L} are the linear and angular momentum operators, $\hat{p} \times \hat{L} =$
 - A) $-\hat{L} \times \hat{p}$ B)ZeroC) $-\hat{L} \times \hat{p} i\hbar \hat{p}$ D) $-\hat{L} \times \hat{p} + 2i\hbar \hat{p}$